
Smart Contract Audit Report
for

AImstrong AI
Final Report

July, 2025

Contents

1 Introduction 2
1.1 About AImstrong AI . 2
1.2 Vulnerability Summary . 2

2 Findings 3
2.1 ID-01: Invalid Borrow Validation Using user Instead of onBehalfOf 4
2.2 ID-02: Liquidity Index Overflow via Empty Pool Donation Attack 6
2.3 ID-03: Misuse of LTV as Borrow Ratio Breaks Lending Logic 7
2.4 ID-04: Incorrect Usage of reserve.borrowPool Instead of poolFrom 8
2.5 ID-05: Incorrect Loop Boundary When Accessing Mapping 10
2.6 ID-06: Misleading Variable Name onBehalfOf in Collateral Configuration . . 11
2.7 ID-07: Inconsistent Parameter Ordering Between Function and Struct 12

3 Appendix 13
3.1 Severity Definitions . 13
3.2 Finding Categories . 13

Page | 1

1 Introduction

Trufy has been engaged by what to perform a security audit of the AImstrong AI smart
contracts. The purpose of this audit is to achieve the followings:

• Ensure that smart contract functions work as intended.
• Identify possible vulnerabilities, which could be exploited by an attacker.
• Identify smart contract bugs, which might lead to unexpected behavior.
• Make recommendations to improve code safety and readability.

As with any code audit, there is a limit to which vulnerabilities can be found, and unexpected
execution paths may still be possible. The author of this report does not guarantee complete
coverage.

1.1 About AImstrong AI

1.1.1 Project Summary

• Project Name: AImstrong AI
• Language: Solidity
• Audit method: Static Analysis, Manual Review
• Scope:
⋄ contracts/protocol/adapter
⋄ contracts/protocol/lending-vault
⋄ contracts/protocol/libraries/logic
⋄ contracts/protocol/libraries/tokenization
⋄ feature/admin-contract/contracts
⋄ feature/omni-lending/contracts

1.2 Vulnerability Summary

Severity # of Findings

Critical 3
Medium 1
Low 1
Info 2

Page | 2

2 Findings

ID Title Type Severity Status

ID-01 Invalid Borrow Validation Using user
Instead of onBehalfOf

Logical Issue Critical Solved

ID-02 Liquidity Index Overflow via Empty Pool
Donation Attack

Logical Issue Critical Solved

ID-03 Misuse of LTV as Borrow Ratio Breaks
Lending Logic

Logical Issue Critical Solved

ID-04 Incorrect Usage of reserve.borrowPool
Instead of poolFrom

Logical Issue Medium Solved

ID-05 Incorrect Loop Boundary When
Accessing Mapping

Logical Issue Low Solved

ID-06 Misleading Variable Name onBehalfOf
in Collateral Configuration

Informational Info Solved

ID-07 Inconsistent Parameter Ordering
Between Function and Struct

Informational Info Solved

Page | 3

2.1 ID-01: Invalid Borrow Validation Using user Instead of onBehalfOf

Type Severity Location Status

Logical Issue Critical CrossChainLendingController.sol#L475 Solved

2.1.1 Description

The function _processValidateBorrowMessage handles cross-chain borrow requests by de-
coding message payloads and calling validateBorrow to ensure borrowing conditions are
met. However, it incorrectly uses user instead of onBehalfOf when retrieving the borrower’s
data:

440 (vars.user , vars.onBehalfOf , vars.asset , vars.amountToBorrow) =
abi.decode(

441 data ,
442 (address , address , address , uint256)
443);
444

445 // ...
446

447 DataTypes.UserGlobalData storage userData = _users[vars.user];
448

449 // ...
450

451 ValidationLogic.validateBorrow(
452 poolData.reserves[vars.asset],
453 vars.amountToBorrow ,
454 vars.amountInUSD ,
455 _pools ,
456 userData , // @audit this should be userData of `onBehalfOf `
457 _chainsList ,
458 _chainsCount ,
459 _addressesProvider.getPriceOracle ()
460);

This call uses userData = _users[vars.user], which is the initiator of the message, instead
of _users[vars.onBehalfOf], who is the actual target borrower of the requested loan. This
creates a logical inconsistency where the health factor, collateral, and eligibility checks are
performed on the wrong account.

2.1.2 Recommendations

• Replace the borrower context in the validation call to use onBehalfOf:

Page | 4

admin-contract/contracts/protocol/controller/CrossChainLendingController.sol#L475

458 DataTypes.UserGlobalData storage userData = _users[vars.
onBehalfOf];

Page | 5

2.2 ID-02: Liquidity Index Overflow via Empty Pool Donation Attack

Type Severity Location Status

Logical Issue Critical ReserveLogic Solved

2.2.1 Description

When the pool reserve is empty, an attacker can exploit the liquidityIndex update logic to
cause catastrophic overflow in future calculations:

1. Attacker deposits a minimal amount to mint scaledBalance = 1 unit of TToken.
2. Attacker donates a very large (but tiny in human terms) amount of aTokens directly

into the pool, e.g., ~5e11 units when the asset uses 18 decimals.
3. The donation drastically increases the liquidityIndex, since it is calculated by dividing

the donation against the extremely small supply base.

With totalScaledSupply = 1, the liquidityIndex jumps by 5e11 * 1e27.

4. The system enforces:

154 require(newLiquidityIndex <= type(uint128).max , "liquidity
index overflow");

While the index may not overflow immediately, it can easily surpass safe bounds and over-
flow later when legitimate users have already deposited. This delayed overflow corrupts
accounting for all depositors and can lock the pool in an inconsistent state.

This creates a toxic reserve scenario: the first attacker manipulates the index, and future
users are exposed to inevitable accounting failure.

2.2.2 Recommendation

Prevent reserves from starting at scaledSupply = 0. Specifically:

• Ensure the protocol itself always seeds each reserve with a non-zero minimum deposit
during initialization.
• Alternatively, enforce a guard that rejects updates when scaledSupply < threshold

(e.g., < 1e6 wei).
• Add invariant checks to prevent liquidityIndex from increasing by disproportionate

amounts relative to real liquidity.

By ensuring the pool is never empty, the exploit vector of artificially inflating the index
through small donations is eliminated.

Page | 6

contracts/protocol/libraries/logic/ReserveLogic.sol

2.3 ID-03: Misuse of LTV as Borrow Ratio Breaks Lending Logic

Type Severity Location Status

Logical Issue Critical BorrowLogic.executeBorrow Solved

2.3.1 Description

In executeBorrow(), the function uses reserve.configuration.getLtv() from the bor-
rowed asset to calculate required collateral:

79 uint256 borrowLtv = reserve.configuration.getLtv ();
80

81 uint256 collateralNeededInUsd = RefinanceLogic._getUsdValue(
reserve , params.amount , oracle).percentDiv(borrowLtv);

This is incorrect: LTV is defined on collateral assets, representing how much can be borrowed
against them. Using the borrow asset’s LTV breaks the lending logic and may allow under-
collateralized loans, risking system insolvency.

2.3.2 Recommendation

Use the LTV of each collateral asset, not the borrowed asset. Ensure that:

1 totalCollateralValue * LTV >= borrowAmount

Update the logic accordingly to preserve lending safety.

Page | 7

contracts/protocol/libraries/logic/BorrowLogic.sol#L79

2.4 ID-04: Incorrect Usage of reserve.borrowPool Instead of poolFrom

Type Severity Location Status

Logical Issue Medium RefinanceLogic.executeRefinanceBorrow Solved
Logical Issue Medium RefinanceLogic.executeRefinanceBorrow Solved

2.4.1 Description

The function executeRefinanceBorrow incorrectly uses reserve.borrowPool instead of
the intended parameter poolFrom during the withdrawal process. Specifically, within the
delegatecall invocation for the withdraw method, the code mistakenly references reserve.
borrowPool instead of the correct poolFrom.

This incorrect reference may result in withdrawals from an unintended pool, causing funds
to be moved improperly or fail unexpectedly, thereby potentially affecting the refinancing
operation.

80 uint256 borrowAmount = ILendingAdapter(adapterFrom).
borrowBalance(reserve.borrowPool , address(this), asset);
// @audit should be poolFrom

81 if (borrowAmount == 0) return;
82 if (amount > borrowAmount) amount = borrowAmount;
83

84 bool success;
85 for (uint256 i = 0; i < reservesCount; i++) {
86 uint256 maxWithdraw = ILendingAdapter(adapterFrom).

maxWithdraw(poolFrom , address(this), reserves[i],
minHf , oracle);

87

88 if (maxWithdraw == 0) continue;
89

90 // withdraw
91 (success ,) = adapterFrom.delegatecall(
92 abi.encodeWithSelector(
93 ILendingAdapter.withdraw.selector ,
94 reserve.borrowPool , // @audit should be poolFrom
95 reserves[i],
96 maxWithdraw
97)
98);
99 require(success , "withdraw failed");

Page | 8

contracts/protocol/libraries/logic/RefinanceLogic.sol#L80
contracts/protocol/libraries/logic/RefinanceLogic.sol#L94

2.4.2 Recommendations

Replace reserve.borrowPool with poolFrom to ensure withdrawals occur from the correct
pool and maintain the intended logical flow of the refinancing operation.

Page | 9

2.5 ID-05: Incorrect Loop Boundary When Accessing Mapping

Type Severity Location Status

Logical Issue Low GenericLogic.sol#L209 Solved

2.5.1 Description

The function calculateUserAccountData iterates over a list of chains stored as a mapping(
uint256 => uint256) using the loop condition i <= chainsCount:

209 for (vars.i = 0; vars.i <= chainsCount; vars.i++) {
210 vars.chainId = chainsList[vars.i];
211 ...
212 }

In Solidity, accessing a mapping with a key that has never been written to returns the default
value 0. This means that when vars.i == chainsCount, the code accesses chainsList
[chainsCount], which likely resolves to 0. Unless 0 is a valid chain ID, this introduces
unnecessary computation on default data.

Fortunately, all downstream computations will treat the data associated with chain ID 0 as
zeroed values (due to how uninitialized structs behave in Solidity), resulting in no harmful
effect on user balances or health factor.

2.5.2 Recommendations

• Change the loop condition to use a strict less-than comparison:

209 for (vars.i = 0; vars.i < chainsCount; vars.i++) { ... }

Page | 10

admin-contract/contracts/protocol/libraries/logic/GenericLogic.sol#L209

2.6 ID-06: Misleading Variable Name onBehalfOf in Collateral Configu-
ration

Type Severity Location Status

Informational Info CrossChainLendingController.sol#L135 Solved

2.6.1 Description

In the function _processValidateSetUserUseReserveAsCollateral, the input data is de-
coded as follows:

135 (address onBehalfOf , address asset , bool useAsCollateral) = abi
.decode(

136 data ,
137 (address , address , bool)
138);

The variable onBehalfOf represents the target user whose collateral configuration is being
updated. However, the name onBehalfOf implies that the action is being performed by a
third party on the user’s behalf. This is misleading, as there is no delegation or external
actor indicated elsewhere in the function — the user in question is the direct subject of the
configuration update.

All subsequent interactions refer to this address as the owner of the updated data:

147 DataTypes.UserGlobalData storage userData = _users[onBehalfOf];
148 ...
149 UserChainData.userConfig.setUsingAsCollateral (...);

2.6.2 Recommendations

• Rename the variable onBehalfOf to user to improve clarity and semantic correctness.
• Avoid naming patterns that suggest proxy or delegated behavior unless such mechanisms

are implemented and enforced.

Page | 11

admin-contract/contracts/protocol/controller/CrossChainLendingController.sol#L135

2.7 ID-07: Inconsistent Parameter Ordering Between Function and
Struct

Type Severity Location Status

Informational Info OmniLendingPool.sol#L206 Solved

2.7.1 Description

In the public function borrow, the parameters are defined as follows:

193 function borrow(
194 address asset ,
195 uint256 amount ,
196 address onBehalfOf ,
197 uint16 referralCode
198)

However, when passing these parameters into the ExecuteBorrowParams struct for internal
processing, the ordering is reversed:

210 DataTypes.ExecuteBorrowParams ({
211 asset: asset ,
212 amount: amount ,
213 referralCode: referralCode ,
214 onBehalfOf: onBehalfOf //comes after
215 });

Although the named arguments ensure correct mapping at runtime, this inconsistency intro-
duces cognitive overhead and potential confusion for developers, auditors, and contributors
reading the codebase. It also increases the risk of mistakes if the struct is ever instantiated
positionally, or in code-generated interfaces and bindings.

2.7.2 Recommendations

• Align the order of parameters in the public borrow() function to match the struct field
order, or vice versa.

Page | 12

omni-lending/contracts/omniprotocol/omnilendingpool/OmniLendingPool.sol#L206

3 Appendix

3.1 Severity Definitions

Critical

This level vulnerabilities could be exploited easily and can lead to asset loss, data loss, asset,
or data manipulation. They should be fixed right away.

Medium

This level vulnerabilities are hard to exploit but very important to fix, they carry an elevated
risk of smart contract manipulation, which can lead to critical-risk severity.

Low

This level vulnerabilities should be fixed, as they carry an inherent risk of future exploits, and
hacks which may or may not impact the smart contract execution.

Info

This level vulnerabilities can be ignored. They are code style violations and informational
statements in the code. They may not affect the smart contract execution.

3.2 Finding Categories

Gas Optimization

Gas Optimization findings refer to exhibits that do not affect the functionality of the code but
generate different, more optimal EVM opcodes resulting in a reduction on the total gas cost
of a transaction.

Logical Issue

Logical Issue findings are exhibits that detail a fault in the logic of the linked code, such as
an incorrect notion on how block.timestamp works.

Inconsistency

Inconsistency findings refer to functions that should seemingly behave similarly yet contain
different code, such as a constructor assignment imposing different require statements on
the input variables than a setter function.

Coding Style

Coding Style findings usually do not affect the generated byte-code and comment on how to
make the codebase more legible and as a result easily maintainable.

Mathematical Operations

Mathematical Operation exhibits entail findings that relate to mishandling of math formulas,
such as overflows, incorrect operations etc.

Page | 13

Dead Code

Code that otherwise does not affect the functionality of the codebase and can be safely
omitted.

Language Specific

Language Specific findings are issues that would only arise within Solidity, i.e. incorrect usage
of private or delete.

Centralization

Centralization findings detail the design choices of designating privileged roles or other
centralizedcontrols over the code.

Page | 14

	Introduction
	About AImstrong AI
	Vulnerability Summary

	Findings
	ID-01: Invalid Borrow Validation Using user Instead of onBehalfOf
	ID-02: Liquidity Index Overflow via Empty Pool Donation Attack
	ID-03: Misuse of LTV as Borrow Ratio Breaks Lending Logic
	ID-04: Incorrect Usage of reserve.borrowPool Instead of poolFrom
	ID-05: Incorrect Loop Boundary When Accessing Mapping
	ID-06: Misleading Variable Name onBehalfOf in Collateral Configuration
	ID-07: Inconsistent Parameter Ordering Between Function and Struct

	Appendix
	Severity Definitions
	Finding Categories

