
Smart Contract Audit Report
for

OmniFarming Vault V2
Final Report

August, 2025

Contents

1 Introduction 2
1.1 About Thorn’s Vault . 2
1.2 Vulnerability Summary . 2

2 Findings 3
2.1 ID-01: Unsafe Approve Usage . 4

3 Appendix 5
3.1 Severity Definitions . 5
3.2 Finding Categories . 5

Page | 1

1 Introduction

OmniFarming V2 is a yield optimization protocol that extends the Yearn V3 vault architecture.
It allows users to deposit assets into a vault, which are then allocated to various strategies to
maximize returns. Key features include automated fund allocation, performance-based fees,
and mechanisms to handle unrealized losses.

1.1 About Thorn’s Vault

1.1.1 Project Summary

• Project Name: OmniFarming V2
• Language: Solidity
• Codebase: https://github.com/Thorn-Protocol/omni-v2-core-contracts
• Commit: 7a643bf80a57cf4c3a51d18ba61fb73abdffa4bd
• Audit methods: Static Analysis, Manual Review
• Scope:
⋄ contracts/protocol/Vault.sol
⋄ contracts/protocol/libraries/logic/DebtLogic.sol

1.2 Vulnerability Summary

Severity # of Findings

Critical 0
Medium 1
Low 0
Info 0

Page | 2

https://github.com/Thorn-Protocol/omni-v2-core-contracts

2 Findings

ID Title Type Severity Status

ID-01 Unsafe Approve Usage Security Issue Medium Checked

Page | 3

2.1 ID-01: Unsafe Approve Usage

Type Severity Location Status

Security Issue Medium DebtLogic.sol line 285 Checked

2.1.1 Description

The ExecuteUpdateDebt function in DebtLogic.sol uses the unsafe method from the ERC20
standard to set an allowance for the caller. This approach can lead to potential issues with
certain ERC20 token implementations that do not handle allowance changes safely, such as
those that require setting the allowance to zero before changing it to a new value.

2.1.2 Recommendations

Replace the unsafe call with ForceApprove from the SafeERC20 library to ensure compatibility
with all ERC20 tokens and to mitigate risks associated with allowance manipulation.

283 if (assetsToDeposit > 0) {
284 address _asset = vault.asset();
285 IERC20 token = IERC20(_asset);
286

287 IERC20(_asset).forceApprove(strategy , 0);
288 IERC20(_asset).forceApprove(strategy , assetsToDeposit);
289

290 uint256 preBalance = IERC20(_asset).balanceOf(address(this)
);

291 IStrategy(strategy).deposit(assetsToDeposit , address(this))
;

292 uint256 postBalance = IERC20(_asset).balanceOf(address(this
));

293

294 IERC20(_asset).forceApprove(strategy , 0);
295

296 assetsToDeposit = preBalance - postBalance;
297 vault.totalIdle -= assetsToDeposit;
298 vault.totalDebt += assetsToDeposit;
299 }

Page | 4

contracts/protocol/libraries/logic/DebtLogic.sol

3 Appendix

3.1 Severity Definitions

Critical

This level vulnerabilities could be exploited easily and can lead to asset loss, data loss, asset,
or data manipulation. They should be fixed right away.

Medium

This level vulnerabilities are hard to exploit but very important to fix, they carry an elevated
risk of smart contract manipulation, which can lead to critical-risk severity.

Low

This level vulnerabilities should be fixed, as they carry an inherent risk of future exploits, and
hacks which may or may not impact the smart contract execution.

Info

This level vulnerabilities can be ignored. They are code style violations and informational
statements in the code. They may not affect the smart contract execution.

3.2 Finding Categories

Gas Optimization

Gas Optimization findings refer to exhibits that do not affect the functionality of the code but
generate different, more optimal EVM opcodes resulting in a reduction on the total gas cost
of a transaction.

Logical Issue

Logical Issue findings are exhibits that detail a fault in the logic of the linked code, such as
an incorrect notion on how block.timestamp works.

Inconsistency

Inconsistency findings refer to functions that should seemingly behave similarly yet contain
different code, such as a constructor assignment imposing different require statements on
the input variables than a setter function.

Coding Style

Coding Style findings usually do not affect the generated byte-code and comment on how to
make the codebase more legible and as a result easily maintainable.

Mathematical Operations

Mathematical Operation exhibits entail findings that relate to mishandling of math formulas,
such as overflows, incorrect operations etc.

Page | 5

Dead Code

Code that otherwise does not affect the functionality of the codebase and can be safely
omitted.

Language Specific

Language Specific findings are issues that would only arise within Solidity, i.e. incorrect usage
of private or delete.

Page | 6

	Introduction
	About Thorn’s Vault
	Vulnerability Summary

	Findings
	ID-01: Unsafe Approve Usage

	Appendix
	Severity Definitions
	Finding Categories

